(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
not(not(x)) → x
not(or(x, y)) → and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) → or(not(not(not(x))), not(not(not(y))))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
not(or(x, y)) →+ and(not(not(not(x))), not(not(not(y))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0,0].
The pumping substitution is [x / or(x, y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
not(not(x)) → x
not(or(x, y)) → and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) → or(not(not(not(x))), not(not(not(y))))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
not(not(x)) → x
not(or(x, y)) → and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) → or(not(not(not(x))), not(not(not(y))))
Types:
not :: or:and → or:and
or :: or:and → or:and → or:and
and :: or:and → or:and → or:and
hole_or:and1_0 :: or:and
gen_or:and2_0 :: Nat → or:and
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
not
(8) Obligation:
TRS:
Rules:
not(
not(
x)) →
xnot(
or(
x,
y)) →
and(
not(
not(
not(
x))),
not(
not(
not(
y))))
not(
and(
x,
y)) →
or(
not(
not(
not(
x))),
not(
not(
not(
y))))
Types:
not :: or:and → or:and
or :: or:and → or:and → or:and
and :: or:and → or:and → or:and
hole_or:and1_0 :: or:and
gen_or:and2_0 :: Nat → or:and
Generator Equations:
gen_or:and2_0(0) ⇔ hole_or:and1_0
gen_or:and2_0(+(x, 1)) ⇔ or(hole_or:and1_0, gen_or:and2_0(x))
The following defined symbols remain to be analysed:
not
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol not.
(10) Obligation:
TRS:
Rules:
not(
not(
x)) →
xnot(
or(
x,
y)) →
and(
not(
not(
not(
x))),
not(
not(
not(
y))))
not(
and(
x,
y)) →
or(
not(
not(
not(
x))),
not(
not(
not(
y))))
Types:
not :: or:and → or:and
or :: or:and → or:and → or:and
and :: or:and → or:and → or:and
hole_or:and1_0 :: or:and
gen_or:and2_0 :: Nat → or:and
Generator Equations:
gen_or:and2_0(0) ⇔ hole_or:and1_0
gen_or:and2_0(+(x, 1)) ⇔ or(hole_or:and1_0, gen_or:and2_0(x))
No more defined symbols left to analyse.